Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography

نویسندگان

  • Guangyu Liu
  • Hongping Zhao
  • Jing Zhang
  • Joo Hyung Park
  • Luke J Mawst
  • Nelson Tansu
چکیده

Highly uniform InGaN-based quantum dots (QDs) grown on a nanopatterned dielectric layer defined by self-assembled diblock copolymer were performed by metal-organic chemical vapor deposition. The cylindrical-shaped nanopatterns were created on SiNx layers deposited on a GaN template, which provided the nanopatterning for the epitaxy of ultra-high density QD with uniform size and distribution. Scanning electron microscopy and atomic force microscopy measurements were conducted to investigate the QDs morphology. The InGaN/GaN QDs with density up to 8 × 1010 cm-2 are realized, which represents ultra-high dot density for highly uniform and well-controlled, nitride-based QDs, with QD diameter of approximately 22-25 nm. The photoluminescence (PL) studies indicated the importance of NH3 annealing and GaN spacer layer growth for improving the PL intensity of the SiNx-treated GaN surface, to achieve high optical-quality QDs applicable for photonics devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Band Structure Measurements and Calculations of Epitaxially Grown GaN Based Photonic Crystal Slabs with Semipolar Quantum Wells

We report on the large area realization of GaN photonic crystal slabs with semipolar InGaN quantum wells (QWs) using laser interference lithography and selective area metalorganic vapour phase epitaxy (MOVPE). Directional extraction of guided modes was observed in angle-resolved photoluminescence spectroscopy (ARPL), and the photonic crystal slab dispersion relation was measured. A comparison o...

متن کامل

Selective Growth of InAs Quantum Dots by Metalorganic Chemical Vapor Deposition

We report results of both strain-driven surface segregation of indium from InGaAs thin films as well as selective area epitaxy of InAs quantum dots using these films. InAs segregation from an underlying InGaAs film allows for preferential growth of quantum dots when additional InAs is deposited. By using standard lithography techniques, a two-step selective growth process for quantum dots is ac...

متن کامل

Blue–green–red LEDs based on InGaN quantum dots grown by plasma-assisted molecular beam epitaxy

Self-assembled InGaN quantum dots were grown in the Stranski–Krastanov mode by plasma-assisted molecular beam epitaxy. The average dot height, diameter and density are 3 nm, 30 nm and 7 × 1010 cm–2, respectively. The dot density was found to decrease as the growth temperature increases. The cathodoluminescence emission peak of the InGaN/GaN multiple layer quantum dots (MQDs) was found to red sh...

متن کامل

Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy

Self-assembled InGaN quantum dots (QDs) have been grown using metalorganic vapor-phase epitaxy (MOVPE), without using antisurfactant. Using 120 s annealing, InGaN QDs have been successfully formed with a circular base diameter of 40 nm and an average height of 4 nm, with QDs density of 4 10 cm . The InGaN QDs have peak photoluminescence (PL) wavelengths of 519 and 509 nm for samples without and...

متن کامل

Optical properties of InGaN Quantum Dots

This study provides a novel technique in MOVPE for growing nanometer scale InGaN QDs. Growth interruption method had been introduced into epitaxial processes of InGaN layers, and we successfully formed InGaN SAQDs with a typical lateral size of 25 nm and an average height of 4.1 nm. The QDs density is about 2×10 cm. Micro-Raman measurement reveals that samples with the nanoscale InGaN QD struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011